METEN.NL

NIEUWKOOP

USER MANUAL

TU3020 TURBIDITY CONTROLLER

Valid for the 091.3713 op	otion
Scales :	0/4/40/400 NTU 0/40/400/4000 NTU
	0/9/99/999 ppm – mg/I 0/99/999/9999 ppm – mg/I
Power supply :	110/220 Vac
Software :	R2.0x

Cod. 2800511 Rev. C - 07/17

<u>INDEX</u>

1	PRODU	CT PRESENTATION	3
	1.1	PRINCIPLE OF OPERATION	3
	1.2	SENSORS AND ACCESSORIES	4
2	GENERA	AL WARNINGS AND INFORMATION FOR ALL USERS	5
	2.1	WARRANTY	5
	2.2	AFTER SALES SERVICE	5
	2.3	CE MARKING	5
	2.4	SAFETY WARNINGS	5
3	FEATUR	ES	6
4	SPECIFI	CATIONS	7
	4.1	FUNCTIONAL SPECIFICATIONS	7
	4.2	TECHNICAL SPECIFICATIONS	10
	4.3	TURBIDITY FLOW CELL AND PROBES SPECIFICATIONS	14
	4.4	PHYSICAL SPECIFICATIONS	14
5	SOFTW	ARE DESCRIPTION	
	5.1	READOUT SEQUENCES	16
	5.2	CALIBRATION SEQUENCES	
	5.2.1	Automatic/manual mode	
	5.2.2	Zero and sensitivity adjustment	
	5.2.3	Check signal calibration	
	5.2.4	Set-point A/B calibration	
	5.2.5	Alarm calibration	
	5.2.6	Cleaning function calibration	
	5.3	VISUALIZATIONS	
	5.4	CONFIGURATION	
	5.4.1	Keyboard locked/unlocked	
	5.4.2	LCD display contrast	
	5.4.3	Access number	
	5.4.4	Measuring unit	
	5.4.5	Measuring range	
	5.4.6	Measuring scale	
	5.4.7	Autorange	
	5.4.8	Software filter large	
	5.4.9	Software filter small	

	5.4.10	Check signal	
	5.4.11	Analog output nº1 range	
	5.4.12	Analog output n°2 range (only for option 091.3713)	
	5.4.13	Set-point A function	
	5.4.14	Set-point B function	
	5.4.15	Set-point A alarm	
	5.4.16	Set-point B alarm	
	5.4.17	Alarm for external light too high	
	5.4.18	C relay contacts	
	5.4.19	Cleaning function	
	5.4.20	New access number	
6	INSTALLA	ATION	
	6.1	HYDRAULIC INSTALLATION	
	6.2	TURBIDITY PROBE INSTALLATION	
	6.3	CONTROLLER INSTALLATION	
	6.4	ELECTRICAL INSTALLATION	
7	OPERATI	NG THE SYSTEM	
8	CALIBRA	TION	
	8.1	CALIBRATION WITH FORMAZINE	
	8.2	CALIBRATION WITH COMPARISON METHOD	
9	PREVENT	IVE MAINTENANCE	

WARRANTY CERTIFICATE	51
REPAIR	51
TECHNICAL SUPPORT	52

1 PRODUCT PRESENTATION

The turbidity system is composed by:

In flow application

- Turbidity monitor TU 7685
- Turbidity probe TU 810 (ISO 7027 EN 27027)
- Flow cell TU 910 TU 920

Immersion application

- Turbidity monitor TU 7685
- Turbidity probe TU 8182 (ISO 7027 EN 27027)

The monitor will perform the following functions:

- 1) Turbidity readout
- 2) Messages/alarm in case of dirty lens, dry cell, external light too high
- 3) Dual control relay
- 4) Min/max alarm
- 5) Analog output
- 6) RS232 output (option)

1.1 PRINCIPLE OF OPERATION

The turbidity and suspended solid measurement follows the nephelometric method. A light beam is sent in the sample through an optical lens.

The 90 degree scattered light by suspended particle is collected by the probe through a second lens, detected and converted in an electric signal proportional to the turbidity of the sample.

The probes TU 810, TU 8105 and TU 8182 use an infrared light and the measuring is not effected by the

color of the sample.

The turbidity probes include:

- IR light source (ISO version),
- detector of the light diffused by suspended particles,
- detector of the control signal from the surface of the lens,
- preamplifier that allows the monitor connection up to 100 m distance.

1.2 SENSORS AND ACCESSORIES

To be ordered separately:

Turbidity probes

TU 8	310	turbidity probe for in flow measuring. PVC body TU
8105	5	turbidity probe for in flow measuring. PVDF body
TU 81	82	immersion turbidity probe with autoclean nozzle

Accessoires for TU 810 and TU 8105

	1	11			
æ	1	1	100	68	A.
0.12	-4.				
•@		-		-6	

TU 910	flow cell for TU810 – TU8105				
TU 920	flow cell for TU810 – TU8105				
SZ 9481 (for different leng	10 m th cal	cable + 22 ples please	231520 9 cor	0 conne ntact oui	ctor r Sales Dept.)
1892702	PVC	adapter	for	in-line	installation
1892706	PDF	adapter	for	in-line	installation
2713118	O.R. for 1892702 and 1892706				

Accessories suitable for TU 8182

0012.450043	adapter for extension pipe I" NPT
0012.000624	swivel mounting + adapter 0012.450043
0012.440040	33 m plastic tubing for pressure air

Various

A		
	BC 931.2	IP65 enclosure for one unit
	BC 931.3	IP65 enclosure for two units
	BC 9616.2	IP65 enclosure for one unit series 7685

2 GENERAL WARNINGS AND INFORMATION FOR ALL USERS

2.1 WARRANTY

This product is guaranteed for 5 years from the date of purchase for all manufacturing defects. Please take a look at the terms and conditions described on the warranty certificate at the end of the manual.

2.2 AFTER SALES SERVICE

Nieuwkoop B.V./B&C offers to all of its customers the following services:

- a free of charge technical assistance over the phone and email for problems regarding installation, calibration and regular maintenance;
- a repairing service in our Aalsmeer (Netherlands) headquarter for all types of damages, calibration or for a scheduled maintenance.

Please take a look at the technical support data sheet at the end of the manual for more details.

2.3 CE MARKING

This instrument is manufactured according to the following European community directives:

• 2011/65/EU "Restriction of the use of certain hazardous substances in electrical and electronic equipment"

Until 19/04/2016:

- 2006/95/EC "Low Voltage" LV
- 2004/108/EC "Electromagnetic compatibility" EMC

From 20/04/2016:

- 2014/35/EU "Low Voltage" LV
- 2014/30/EU "Electromagnetic compatibility" EMC
- EN 61010-1/2011 "Low Voltage" LV
- EN 61326-1/2013 "Electromagnetic compatibility" EMC
 - Controlled electromagnetic environment
- EN 55011/2009 "Radio-frequency disturbance characteristics"
 - Class A (devices for usage in all establishment other than domestic)
 - Group 1 (Industrial equipment that do not exceed 9kHz)

The marking $\mathfrak{C}\mathfrak{E}$ is placed on the packaging and on the S/N label of the instrument.

2.4 SAFETY WARNINGS

It is important to underline the fact that electronic instruments are subject to accidental failure. For this, it is important to take all necessary precautions to avoid damages caused by malfunctions. Any operation must be performed by authorized and trained staff.

The use of this controller must comply with the parameters described in chapter "Technical specifications", in order to avoid potential damages and a reduction of its operating life.

3 FEATURES

* Input from amplified probe TU810 - TU8105 or TU8182

* Selectable scales: 0/4/40/400 NTU 0/40/400/4000 NTU 0/9/99/999 ppm – mg/I 0/99/999/9999 ppm – mg/I

- * Autoranging
- * Automatic zeroing during the dark cycle
- * Automatic zero calibration
- * Sensitivity calibration
- * Check signal of the lens operating conditions
- * Alphanumeric back-lighted LCD
- * Dual software filter on the readout
- * Automatic, manual operating mode
- * 0/20 mA or 4/20 mA programmable isolated output
- * Output span programmable

* Dual set-points with hysteresis, delay and min/max programmable functions

- * Alarms relay continuous or flashing for: Min/max values
 Set-points timing
 Dirty probe
 No liquid on the cell
 Ambient light too high
- * Autoclean relay with holding function
- * Software:
- 3 access levels
- user friendly
- keyboard lock
- watch-dog
- * EEPROM parameter storage
- * Automatic overload protection and reset
- * Extractable terminal blocks
- * 96X96 (1/4" DIN) housing

4 SPECIFICATIONS

4.1 FUNCTIONAL SPECIFICATIONS

<u>Input</u>

The monitor is designate to operate with infrared light probes TU810 – TU8105 – TU8182. The light is pulsed and the unit makes an automatic zero in each dark cycle.

The above probes include a preamplifier that allows an installation up to 100 meter distance.

Selectable scales

0/4/40/400 NTU or 0/40/400/4000 NTU 0/9/99/999 ppm – mg/I or 0/99/999/9999 ppm – mg/I

The autorange function can be activated.

Software filter

The unit is provided with a dual programmable software filter, to be inserted when the readout is not stable.

The user may select different filter values for small and large signal fluctuations, in order to maintain a steady reading and a fast response to the process measuring variations.

Calibration

The unit recognizes automatically the turbidity standard solutions. The operator may calibrate at any turbidity value. The zero calibration is performed in automatic mode.

Analog output

Either a 0/20 mA or 4/20 mA programmable and isolated output may be selected, for use as an interface with computers or data loggers.

The input range corresponding to the output is programmable.

The user can adjust the analog output in order to match the PLC input specifications.

Control relays

The monitor is equipped with two SPDT control relays.

Each control relay may be programmed for set-point, high/low, hysteresis or delay time actuation. The main display indicates the current settings and current status of each relay.

<u>Alarm relay</u>

The unit contains a SPST relay designated as an alarm relay. This relay may be used to warn of conditions that may indicate operational problems.

The relay will activate on either high/low value conditions, or on failure of the control relays to maintain proper control.

In addition this relay may be activated for dirty probe, lack of water in the cell and external light too high.

The relay action can be programmed for continuous or flashing operation. The flashing frequency be selected high/medium/low.

Check signal

The operator may activate the check signal which detects the surface condition of the lens. This signal should be calibrated at 100% when the probe is clean.

In general the signal decreases with the increasing of the dirt on the lens surface and it increases when the cell is dry or with air bubble inside.

The operator may set min/max values in order to get an alarm for the above conditions.

Operating mode

The instrument is provided with 3 programmable modes of operation.

- Automatic operation (AUTO):

The Automatic mode is the normal operation mode of the unit.

- Manual operation (MAN.):

The relays action is activated by pressing the key or assigned to the specific relay. The measuring, alarm, analog output and calibration functions are active.

Cleaning function

The unit contains a SPST relay designated as an autoclean relay. This relay may be used to start a manual or automatic autoclean cycle.

The user may select:

- the cleaning time
- the waiting time to turn to the normal operation
- the repetition time of the cycle

During the cleaning and waiting the unit will provide:

- flashing messages
- analog outputs in hold
- control and alarm relays deactivated

Configuration

A number of programming functions are provided in the configuration menu and are protected by a selectable access number, which must be entered to allow changes in this setting. The keys on the front panel of the monitor can be used for both changing the display and for calibrations and set-point adjustments.

When the monitor is shipped, all functions are accessible.

However, the adjustment and calibration functions may be locked in order to prevent unauthorized adjustments to the instrument.

<u>Options</u>	
091.3711	<u>Dual isolated and programmable output.</u> Two outputs may be configured for concentration or temperature.
091.701	<u>RS232 isolated output.</u> The output sends the data to the serial port of the computer.
091.404	24 VAC power supply.
091.4141	9/36 VDC power supply.

4.2 TECHNICAL SPECIFICATIONS

The *Default* values are correspondent to the factory calibration values. Parameters marked by " * " can be modified in the Configuration procedures.

OPE	RATING MODE		Default
	Automatic/Manual		Auto
			Defensit
IUI			Default
*	Measuring unit: NTU - mg/I - ppm		NTU
*	Range: Range LO :4/400 NTU - Range LO : 9/999 ppm Range LO : 9/999 mg/l	Range HI : 40/4000 NTU Range HI : 99/9999ppm Range HI : 99/9999 mg/l	4/400 9/999 9/999
*	Input scales (depending of selected	a range <i>)</i> :	
	Range 4/400 NTU - 9/999 ppm - 9/99 0/4.000 - 0/40.00 - 0/400.0 NTU 0/9.999 - 0/99.99 - 0/999.9 ppm SiO2 0/9.999 - 0/99.99 - 0/999.9mg/I SiO2	99 mg/l 2	4.000 NTU 9.999 ppm 9.999 mg/l
	Range 40/4000 NTU - 99/9999 ppm SiO2 - 99/9999 mg/l SiO2 0/40.00 - 0/400.0 - 0/4000 NTU 0/99.99 - 0/999.9 - 0/9999 ppm SiO2 0/99.99 - 0/999.9 - 0/9999 mg/l SiO2		4000 NTU 9999 ppm 9999 mg/l
	Resolution: 0.05% of scale		
*	Auto ranging: Off/On		On
*	Software filter 90% RT: Large signals: 5/220 seconds Small signals: 5/220 seconds		40 s 120 s
	Automatic zero of the probe: 0.0/10.0	0% f.s.	0.0%
	Sensitivity of the Range 4/400 NTU: 8 Sensitivity of the Range 40/4000 NTU	30.0%/120.0% J: 80.0%/120.0%	100 % 100 %
	Standard solutions recognized by th 2.000NTU - 20.00 NTU - 200.0 NTU - 2 5.000PPM - 50.00 PPM - 500.0 PPM - 5.000mg/I- 50.00 mg/I- 500.0 mg/I-	ne unit: 2000 NTU 5000 PPM 5000 mg/l SiO2	

TU3020

TURBIDITY CONTROLLER

CHECK SIGNAL	Default
* Check signal readout: On/off	On
Measuring value: 0.0%/220.0%	
Sensitivity: 50.0%/200.0%	100.0%
Alarm for dirty probe: 0.0%/100.0%	10.0%
Alarm for lack of liquid in the cell: 100.0%/200.0%	200.0%
Delay: 0.0/99.9 sec.	10.0 sec.
Alarm conditions: in OR on relay C	
SET POINT A/B (relays A and B)	Default
Action: ON-OFF	
Set point value: 0 to full scale as selected (NTU, ppm, mg/I)	0 NTU
Hysteresis: 0/10 % of the scale (NTU, ppm, mg/l)	0.010 NTU
Relay delay: 0.0/99.9 sec.	0.0 sec.
* Function: HI/LO (Max/min)	LO
Relay contacts: SPDT 220 V 5 Amps resistive load	
ALARM (relay C)	Default
Low value: from 0 to full scale	0.000 NTU
High value: from 0 to full scale	4.000 NTU
* Alarm on max. SA: ON/OFF	OFF
* Max. time SA: 0/60 minutes	60 m
* Alarm on max. SB: ON/OFF	OFF
* Max. time SB: 0/60 minutes	60 m
* Alarm on external light too high: ON/OFF	OFF
Delay: 0.0/99.9 seconds	0.0 s
* Contact type: ACT/DEA (DEA needs an internal jumper)	ACT
Relay contacts: SPDT 220 Vac 5 Amps resistive load	
AUTOCLEAN (relay D)	Default
* Action: Off/Manual Clean/Auto+Manual Clean	Off
Auto Clean (Manual):	
Repetition of cycle: $01/24.0b$ (only for Auto)	24.0h
* Cleaning time: 0.5/60.0 sec.	15.0 sec.
* Holding time: 01/200' (to be added to the cleaning time)	3'
(analog output in holding ABC relays deactivated)	-
Relay contacts: SPST (N.O.)	
ANALOG OUTPUT Nr. 1	Default
* Range: 0-20/4-20 mA	0-20 m∆
 Point 1 (out 0 or 4 mA): 0 to full scale (NTU. ppm. ma/l) 	
* Point 2 (out 20 mA): 0 to full scale (NTU. ppm. ma/l)	4.000 NTU
Response time: 10 sec. for 98%	
Isolation: 250 Vac	
R max: 600 Ω	

AN	ALOG OUTPUT Nr. 2 (option 091.3711)	Default
*	Range: 0-20/4-20 mA	0-20 mA
	Fine adjustment of 0/4 mA: +/- 0.30 mA	0.0 mA
*	Point 1 (out 0 or 4 mA): 0 to full scale (NTU, ppm, mg/l)	0.000 NTU
*	Point 2 (out 20 mA): 0 to full scale (NTU, ppm, mg/l)	4.000 NTU
	Response time: 10 sec. for 98%	
	Isolation: 250 Vac	
	R max: 600 ohm	

SERIAL COMMUNICATION (option 091.701)

Baud Rate: 4800 bit/s Bit length: 8 bit Nr. of Stop bit: 1 Parity: none Isolated from measure circuits Data frequency: at each readout update

Data format:

 ±x.xxx
 NTU
 ±xxx.x %
 If check signal is ON

 ±xxxx
 NTU
 If check signal is OFF

followed by characters CR LF.

24 VAC POWER SUPPLY (option 091.404)

Voltage: 24 Vdc +/-10 % 50/60 Hz Power: 5 VA max

9/36 VDC POWER SUPPLY (option 091.4141)

Voltage: da 9 a 36 Vcc Power.: 4 W max Current max: 320 mA a 12 Vcc 160 mA a 24 Vcc Isolation I/O: 1500 Vcc

CONFIGURATION (*)	Default	
Free calibration (Access code not required):		
Keyboard locked/unlocked	unlocked	
LCD contrast (0/7)	4	
Access code number required for:	0	
Measuring unit: NTU, ppm, mg/l SiO2	NTU	
Range: 4/400 NTU, 40/4000 NTU	4/400 NTU	
Scales: 4.000/40.00/400.0/4000	4.000 NTU	
Autorange: On/Off	On	
Large signal RT filter SW: 5/220 seconds	40 s	
Small signal RT filter SW: 5/220 seconds	120 s	
Check signal: on/off	On	
Output Nr.1 range: 0/20 4/20 mA	0/20 mA	
Point 1 (for 0 or 4 mA): 0 to full scale	0.000 NTU	
Point 2 (for 20 mA): 0 to full scale	4.000 NTU	
Output Nr.2 range: 0/20 4/20 mA (option 091.3711)	0/20 mA	
Point 1 (for 0 or 4 mA): 0 to full scale	0.000 NTU	
Point 2 (for 20 mA): 0 to full scale	4.000 NTU	
Relay A function: LO/HI	LO	
Relay B function: LO/HI	LO	
Alarm on max. operating time of SA: ON/OFF	OFF	
Max. operating time of SA: 0/60 minutes	60 min	
Alarm on max. operating time of SB: ON/OFF	OFF	
Max. operating time of SB: 0/60 minutes	60 min	
Alarm on external light too high: (ON/OFF)	OFF	
Delay: 0/99 seconds	10.0 s	
Alarm relay status: ACT/DEA	ACT	
Cleaning function: Auto/Manual/Disabled	Disabled	
Cleaning time: 0.5/60.0 seconds	15.0 s	
Holding time: 0.1/20.0 minutes	3.0 min	
Access number: 0/999	lo	

GENERALSPECIFICATIONS

Alphanumeric display: 1 line x 16 characters Acquisition time: 0/50°C Temperature: 0/50 °C Humidity: 95% without condensation Power supply: 110/220 Vac +/- 10 % 50/60 Hz Isolation: 4000 V between primary and secondary (IEC 348) Power: 5 VA max. Terminal block: extractable Enclosure: aluminum IP 54, panel mounting Weight: 850 g Dimensions: 96 x 96 x 155 mm. (DIN 43700)

4.3 TURBIDITY FLOW CELL AND PROBES SPECIFICATIONS

See the specific instruction manual delivered with the flow cell and the turbidity probes.

4.4 PHYSICAL SPECIFICATIONS

The controller enclosure is designed for surface or panel mounting. It consists of an anodized aluminum case built according to the standard DIN 43700, with an aluminum panel coated with scratch-proof and non-corrosive polycarbonate membrane.

Signal and power cable connections are made by using two special extractable terminal blocks placed in the back of the instrument.

The package is supplied complete with fixing clamps for panel-mounting. A transparent front door SZ 7601 can be added to protect the unit.

5 SOFTWARE DESCRIPTION

KEY

FUNCTION

MODE DISP	 It allows the operator to go to the next Display It allows to go back to the main Display. The eventual new parameter values will not be memorized
CAL	- It allows the access of calibration sequences
	 It allows to increase the displayed parameters It allows to choose between different functions
	 It allows to decrease the displayed parameters It allows to choose between different functions
	- It allows to enter the selected data and to return to the main Display D0

5.1 READOUT SEQUENCES

Applying the power to the instrument the display will show the lon selected for approximately 3 seconds, then will show the main display (D0).

	Turbidity meter	
Press to v	visualize the following Display:	~
D0	XX.XXNTU □AL ■BL	Main display, relay status/functions
DI	XX.XXNTU	Turbidity value
D2	CHECK C.:xxx.x%	Check signal value
D3	SA XX.XXNTU * LO	Set-point A parameters
D4	SB XX.XXNTU * HI	Set-point B parameters
D5	AL X.X/XX.XNTU	Alarm parameters
D6	CLEANING OFF	Cleaning parameters
D7	01 xx.xmA/x.xxx	Analog output Nr.1/input values
D8	02 xx.xmA/x.xxx	Analog output Nr.2/input values
D9	Configuration	Configuration display
D10	TU7685 R2.0x	Instrument P/N and software release

MODE DISP	to go to)
	(D9)	Configuration configuration display
	CAL	to activate the programming sequences of keyboard lock/unlock, display contrast, visualization and modification of the instrument configuration parameters
MODE DISP	to go to 	
	(010)	TU7685 R2.0x instrument P/N and software release
MODE DISP	to go ba	ck to the main display (D0).

5.2 CALIBRATION SEQUENCES

The following procedures will be active whenever the instrument is not in the keyboard lock condition. To unlock the keyboard follow the procedures mentioned in the "Configuration" chapter.

The following procedures allow the sensor calibration, the set-point and alarm parameters programming.

The sequence (1, 2, ...) helps the operator to perform the regular calibration sequence.

IMPORTANT NOTE: during the calibration procedure the microprocessor turn the unit to the main display if no keys have been pressed within 5 minutes.

5.2.1 AUTOMATIC/MANUALMODE

Normally the instrument works in automatic mode.

Follow this procedure to change operating mode.

If MANUAL has been selected, the unit will maintain active the analog output and the alarm relay.

press to activate the A relay

press to activate the B relay

5.2.2 ZERO AND SENSITIVITY ADJUSTMENT

Perform this calibration periodically and during the installation.

The unit will adjust the zero on the 3 scales of the selected range. The operator must confirm the calibration value for each scale.

The sensitivity adjustment is done by changing the turbidity value on the display.

Notes:

- -Press call to access the calibration sequence and the previous visualization of the value to be adjusted.
- Press CAL again to access the parameter adjustment.
 Press DISP to exit from the procedure and to turn to (DI).

Zero adjustment

x: actual scale (1, 2, 3) xx.x%: zero value in % of the scale

The instruments is ready to perform the zero calibration of the 3 scales verifying the readout stability.

4. Choose one of the following options:

The unit turn to the sensitivity calibration sequence.

Sensitivity adjustment

SENS: xxx.x %

sensitivity visualization

SENS: sensitivity calibration sequence xxx.x %: sensitivity value of the probe

to exit from the procedure and to turn to (D1)

enter the value and to turn to (D1)

1.

to access the sensitivity calibration

CAL S: sensitivity calibration xx.xxNTU: turbidity value (xx.xxSTD): standard solution values as recognized by the unit.

Notes

2.

3.

The unit try to recognize the value of the Standard solution in order to perform the calibration. If the solution is recognized the display will show the value followed by the message STD.

Standard solution automatically recognized by the unit:

2.000 NTU - 20.00 NTU - 200.0 NTU - 2000 NTU 5.000 PPM - 50.00 PPM - 500.0 PPM - 5000 PPM 5.000 mg/l - 50.00 mg/l - 500.0 mg/l - 5000 mg/l

<u>MESSAGE</u>

5.2.3 CHECK SIGNAL CALIBRATION

After the cleaning of the lens of the probe, we suggest to adjust the check signal at the value 100%.

The unit will turn to this display:

FOULING: dirt level xx.x%: minimum alarm value for dirty probe

The unit will turn to this display:

DRY CELL: xxx.x%

DRY CELL: cell without liquid xxx.x%: maximum alarm value for the dry cell

to modify the alarm value

to enter the new value and to turn to next step

to exit from the procedure and turn to (D2)

The unit will turn to this display:

DELAY: XX.X S

DELAY: delay adjustment xx.x s: actual value of the delay of the alarm

to exit from the procedure and turn to (D2) $\,$

5.2.4 SET-POINT A/B CALIBRATION

For each A or B set-point it is possible:

- to insert the set-point
- to insert the hysteresis
- to insert the delay time

Set-point value

to access the calibration sequences

CAL SA S: XX.XX

CAL SA S: set-point A calibration xx.xx: set-point value

to exit from the procedure and to go back to (D3)/(D4)

to insert the set-point value

ENT

to confirm and to go to the next step

CAL SA I: hysteresis calibration of set-point A x.xx: actual hysteresis value

5.2.5 ALARM CALIBRATION

The following operations are possible:

- to select the min/max alarm value
- to select the delay time value

5.2.6 CLEANING FUNCTION CALIBRATION

AUTO CLEAN

The following display will be shown:

NEXT CYCLE:xx.xh

NEXT CYCLE: next cleaning cycle xx.xh: time to go to next cycle (hours)

to exit from the procedure and to turn to (D6)

ENT

press 3 keys to reset the waiting time to next cycle

3B.

to visualize the waiting time to next cycle

WAITING: the unit is waiting for the new cleaning cycle (START): the unit is ready to start a new cleaning cycle

4B.

5B.

ENT

select START or WAITING

to enter the new parameter

- by confirming START the unit will turn to (D0) and a manual cleaning cycle will start.

- by confirming WAITING the unit will turn to the insertion of the repetition time of the cycle.

REPETITION:xx.xh

REPETITION: repetition of the cycle xx.xh: repetition time (hours)

to exit from the procedure and to turn to (D6)

insert the repetition time

to enter the new value and to turn to (D6)

UPDATE

The calibration is accepted

Note

If during any calibration procedure any key is not pressed within 5 minutes, the unit will turn to the previous display.

Eventual changing will not be memorized.

5.3 VISUALIZATIONS

The D7, and D8 display allows the analog output current visualization.

The D9 display allows the configuration parameter visualization and the access to modify. The D10 display visualizes the software release and the p/n of the instrument.

MODE DISP press the key 7 times from display D0 to go to D7 01 xx.xmA/x.xxx Output Nº1/ NTU value ·D7· 01: data are referred to the output N°1 xx.xmA: actual current value x.xxx: actual measuring value MODE DISP press the key 8 times to go to D8 02 xx.xmA/x.xxx Output N°2/NTU value (091.3713 only) ·D8· 01: data are referred to the output N° 2 xx.xmA: actual current value x.xxx: actual measuring value MODE DISP press the key 9 times from D0 to go to D9 Configuration display ·D9· Configuration CAL To access the configuration sequences of locking/unlocking the keyboard and the contrast level of the LCD display MODE DISP press the key 10 times from Do to go to D10 ти7685 R2.ox ·D10· p/n and software release MODE DISP to turn to ·DO· ENT to turn to ·D0·

5.4 CONFIGURATION

The following operations are possible:

- keyboard locked/unlocked selection
- display contrast selection
- access number insertion

Note: Inside the Configuration menu, it is possible to use the following keys and functions.

4. ENT

to confirm the desired choice.

After showing the following display, the controller moves to the next step.

UPDATE

5.4.1 KEYBOARD LOCKED/UNLOCKED

KB UNLOCKED

UNLOCKED: keyboard unlocked LOCKED: keyboard locked

5.4.2 LCD DISPLAY CONTRAST

x: contrast level

This procedure allows You to select up to 7 different levels of display contrast.

5.4.3 ACCESS NUMBER

Access Nr.: 0

0: access number request

Response time of SMALL filter

IMPORTANT NOTE:

Any number, different from the correct access code, will allow the visualization of the parameters but not the modification of the same. In this case, the following message will appear.

5.4.10 CHECK SIGNAL

CHECK SIGNAL: ON

(OFF): check signal activation

5.4.11 ANALOG OUTPUT Nº1 RANGE

(4/20mA): input range

CAL PI: beginning of the output range x.xx: measuring value corresponding to 0 or 4 mA

CAL P2: end of the output range xx.xx: measuring value corresponding to 20 mA

Note: If the turbidity value corresponding to P1 is higher than P2, the output will be reverse.

5.4.12 ANALOG OUTPUT Nº2 RANGE (ONLY FOR OPTION 091.3713)

(4/20mA): input range

CAL P1: beginning of the output range x.xx: measuring value corresponding to 0 or 4 mA

CAL P2: end of the output range xx.xx: measuring value corresponding to 20 mA

Note: If the turbidity value corresponding to P1 is higher than P2, the output will be reverse.

5.4.13 SET-POINT A FUNCTION

5.4.14 SET-POINT B FUNCTION

5.4.15 SET-POINT A ALARM

Two alternatives:

- by selecting OFF the alarm function is not activated. The unit goes to the next parameter calibration.
- by selecting ON the alarm function is activated. At this point, the program will ask you to insert the activation time.

TIME SET A: activation time of the Set-point A xx m: actual time value in minutes

5.4.16 SET-POINT B ALARM

LO: minimum HI: maximum

Two alternatives:

- by selecting OFF the alarm function is not activated. The unit goes to the next parameter calibration.
- by selecting ON the alarm function is activated. At this point, the program will ask you to insert the activation time.

TIME SET B: activation time of the Set-point B xx m: actual time value in minutes

5.4.17 ALARM FOR EXTERNAL LIGHT TOO HIGH

EXT.LIGHT AL: ON

Two alternatives:

- OFF The alarm is not active, and the unit will turn to the C relay contact.
- ON The alarm is active and the unit will turn to the delay insertion time.

DELAY: delay before relay activation xx.xs: delay time in seconds

5.4.18 C RELAY CONTACTS

ACT: active alarm = activated relay DEA: active alarm = deactivated relay

Note: by selecting DEA it is necessary to modify an internal jumper.

5.4.19 CLEANING FUNCTION

DISABLED: Cleaning function is Off MANUAL: Manual clean AUTO: Auto clean

If manual or auto clean has been selected, the unit will turn to the following steps:

Cleaning time

CLEANING T:xx.x"

CLEANING T: cleaning time xx.x": actual time in seconds

Holding time

HOLDING T.: x.x'

HOLDING T: holding time x.x': actual time in minutes

5.4.20 NEW ACCESS NUMBER

-by selecting NO the unit will go to the configuration display - by selecting YES the unit will go to the following display:

New Nr.: O

Insert a new access number

The instrument ask the operator to confirm the new access number.

The double insertion of the new access number avoid mistakes of the new code.

As soon as the new number is entered the message "UPDATE" will appear.

Should the operator insert two different numbers, the instrument will not modify the access number and the message "**NO UPDATE**" will be shown.

press several time the key to verify the selected parameters before leaving the configuration menu.

press to exit from the configuration menu.

6 INSTALLATION

6.1 HYDRAULIC INSTALLATION

Sample line

Run the sample line with the short dark tubing enclosed into the TU 910-TU810 package, to minimize the flow time to the instrument and the algae growth.

Take the sample from the middle of the process pipe line. Sample taken from the bottom might ingest sediment from the pipe line. Sample taken from the top might ingest air bubble from the pipe line.

The turbidity probe and cell are both rated 6 bar at 20 °C.

Measuring cell

The TU 910 measuring cell is suitable for the TU 810 – TU 8105 turbidity probe. It is provided with two hose barb fittings for use with plastic tubing and with a wall fixing clamp.

A sample shutoff-flow control valve is provided with the outlet fitting, in order to control the flow rate from 0.1 to 3 lt/min.

Install the cell in horizontal position with the outlet fitting turned up, to avoid air bubble growth close to the probe.

Turbidity measurements at very low value need an installation with total absence of air bubble.

Note

The air bubble growth happens when the sample is under pressure and the flow cell discharges at atmospheric pressure.

To avoid this effect the user must maintain the cell pressurized by reducing the output by the small tap of the cell.

Do not open completely the tap if the cell is under pressure to avoid the discharge of the liquid through the tap.

6.2 TURBIDITY PROBE INSTALLATION

Refer to the specific manual of the installed probe.

6.3 CONTROLLER INSTALLATION

The controller may be installed close to the points being monitored, or it may be located some distance away in a control area.

The enclosure is designed for panel-mounting.

It should be mounted on a rigid surface, in a position protected from the possibility of damage or excessive moisture or corrosive fumes.

The reflection of the internal pipe may be compensated by adjusting the zero.

6.4 ELECTRICAL INSTALLATION

Connections within the controller are made on detachable terminal strips located on the rear side (Fig. 2).

Power and output-recorder connections are made at the 13 pin terminal strip, while input signal connections are made at the 12 pin terminal strip.

Connecting the power

- terminal <u>4</u> connect to the ground
- terminals 1-2 connect to the ac power (if power is 110 V)
- terminals <u>1-3</u> connect to the ac power (if power is 220 V)

(If 091.404 option is installed, connect 24 VAC to <u>1-3</u> terminals)

WARNINGS:

- power the device by means of an isolation transformer if the mains voltage is taken from a branch point with heavy inductive loads
- avoid mains-voltage from an auto-transformer
- separate power supply wires from signal wires
- control the mains voltage value

An internal device protects the unit against power overloads. Disconnect the power and wait few minutes before powering again.

Connecting the probe

Connect the probe to the instrument by means of the built-in cable or the cable SZ 9481 with marked wires from 0 to 7.

Cable Wire Nbr	TU 7685 Terminal Nbr.	Description
0	23	Shield
1	22	HI Turbidity signal
2	25	LO Turbidity signal
3	24	Check signal
4	19	Control LED
5	21	0
6	18	+ 12 V
7	17	– 12 V

Do not interrupt the cable. If necessary use only junction box with high isolation terminals.

Connecting a recorder

Connect to terminals 14-16 for the 1st channel output Connect to terminals 15-16 for the 2nd channel output (091.3711 option)

- connect to the terminal (+) of the recorder N°1 connect to the terminal (+) of the recorder N°2 - terminal 14
- terminal <u>15</u>
- connect to the terminal (-) of the two recorder - terminal 16

Series connection is required for driving more loads with a total input resistance lower than 600 Ω for each channel.

Connecting control relays

The output connections referred to set-point SA and set-point SB are made at terminal strip and they consist of two independent SPDT relays corresponding to regulator A and regulator B.

terminal terminal terminal	6 marked <u>C</u> 5 marked <u>NO</u> 7 marked <u>NC</u>	common contact normal open contact normal closed contact
RELAY "B"	SET-POINT "S	в"
terminal	<u>9</u> marked <u>C</u>	common contact
terminal	<u>8</u> marked <u>NO</u>	normal open contact
terminal	<u>10</u> marked <u>NC</u>	normal closed contact

Connecting alarm relay

The output connection referred to alarm consists of SPST relay C.

RELAY "C"	ALARM	
terminal	<u>12</u> marked <u>C</u>	common contact
terminal	<u>11</u> marked <u>NO</u>	normal open contact

Connecting auto clean relay

The output connection referred to autoclean function consists of SPST relay D.

terminal	<u>12</u> marked <u>C</u>	common contact
terminal	<u>13</u> marked <u>NO</u>	normal open contact

Arc suppressor

Install a suitable snubber between relay terminals if the relay activation causes interferences on the display. (Nieuwkoop snubber SX101).

7 OPERATING THE SYSTEM

<u>Checking</u>

Before connecting the system to the power supply:

- check that all cables are properly fastened to prevent strain on the connections;
- check that all terminal-strip connections are mechanically and electrically sound;
- check that power voltage is correct.

Pre-operation check

The system's controls and indicators are all located on the front panel (Fig.1).

The meter has a LCD display I indicating that the unit is on.

If Probe has been connected correctly, as described in the above sections, the system should function correctly needing only the start up and the parameters calibrations as described in the following section.

Quick start guide

The unit may be installed for the following purposes:

- measuring;

1.

- measuring and regulation;
- measuring, regulation and recording.

The instrument is shipped with factory calibration and configuration suitable for the most popular applications.

For this reason the operation may require just the following steps:

<u>Measuring</u>

- 1. Connect the probe to the meter.
- 2. Switching-on the meter will assume the factory calibration. The display will go to (D0) display.
- 3. The meter is configured for 4/400 NTU range and 0/4.000 NTU scale. Go to the configuration menu in order to select other range/scale.

From (D0) press 9 times $\frac{MODE}{DISP}$ to start the configuration sequence.

Measuring and regulation

Add the following to the preceding operations:

Press ALL LE to go to the manual operation. If the automatic mode is selected, go to the step 2.

- 2. A and B relay are configured as LOW (Minimum). Select HIGH (Maximum) if necessary.
- 3. Select the Set-point, the hysteresis and the delay of A and B relay.

From (D0) press 3 times to start the set-point A selection sequence. From (D0) press 4 times to start the set-point B selection sequence.

- 4. The alarm on the activation time of A and B relay is deactivated. Activate this kind of alarm if necessary.
- 5. Select alarm values of min/max and delay if necessary.

From(D0)press5times to start the alarm selection sequence.

Measuring, regulation and recording

Add the following to the preceding operations:

- 1. Analog output is configured as NTU at 0/20 mA corresponding to the input scale. Select 4/20 mA and a suitable input span if necessary.
- 2. If option 091.3711 is installed, follow the step 1. for the second output.

Manual operation

When the instrument is programmed for the manual operation (see Calibration sequences) the flashing "M" will appear on the display.

Analog outputs and alarm relay will remain activated.

while pressing the key, A relay will be activated.

▼ whil

while pressing the key, B relay will be activated.

Check signal

Check signal is activated as default.

If the operator doesn't use this signal, must be deactivated into the configuration.

From display (D0) press 2 times to start the sequence of the sensitivity and alarm calibration of the check signal.

It is possible to calibrate the following:

- sensitivity calibration at 100%. It is suggested to calibrate 100% after the probe and cell cleaning;
- minimum alarm setting in order to detect the dirt on the lens of the probe;
- maximum alarm setting in order to detect the lack of water into the cell.

Auto clean function

The unit may activate a manual or automatic cleaning cycle of the probe by external device.

This function must be activated into the configuration together with the cleaning time and the holding time of the analog outputs.

The operator may also activate a manual cycle and select the repetition time of the automatic cleaning cycle during 24 hours.

From display (D0) press 6 times to start the manual cleaning sequence or to change the repetition time of the auto clean cycle.

Alarm of too high external light

The unit may activate an alarm if too high external light condition occurs.

This function must be activated into the configuration together with the delay of the alarm relay.

When this function is activated, the C alarm relay will consider this condition in addition. Main display will send the message **"ALARM: EXT.LIGHT"** when this condition will occur.

The unit might go to the next scale if the auto range is activated.

8 CALIBRATION

The instrument and the probe are factory calibrated individually. So the accuracy of the system is independent of the coupling between probe and unit.

Perform the following calibration procedure periodically in order to maintain the requested accuracy.

Zero calibration

The unit measures continuously the ambient light, giving an alarm when it is too high. Therefore the zero calibration is not necessary for measuring values higher than 40 NTU. When using the scale 4.000 NTU with readout smaller than 0.1 NTU, the operator may effect the zero calibration to compensate the residual Turbidity value due to the light diffusion by water free of particles.

This residual value, by using the TU 910 cell is estimated 0.015 NTU.

The operator may use the instrument without calibrating the zero and by taking in account this residual value or he may perform the zero calibration.

Sensitivity calibration

It is suggested to check this calibration every month and to calibrate the unit every three months, depending of the requested accuracy.

The checking and the calibration may be effected in two ways:

- by means of formazine standard solutions
- by means of grab sample analysis with a properly calibrated laboratory turbidity meter

8.1 CALIBRATION WITH FORMAZINE

Before calibrating with formazine standard solutions it is suggested to clean the cell and the optical window of the probe.

- 1) Position the cell in vertically.
- 2) Close or interconnect with a short pipe the two hose fittings.
- 3) Gently stir the formazine bottle and pour slowly the solution into the cell, avoiding air bubble production.
- 4) Insert the probe into the cell.
- 5) Allow to stand until the reading stabilizes.
- 6) Calibrate the unit by following the procedure of the chapter "Calibration sequences".
- 7) Clean the cell with pure water.
- 8) Reinstall the cell and the probe in the process.

Notes:

Calibrate by using Formazine standards not lower than 20 NTU because of the difficulty to achieve the accuracy required to prepare a low turbidity standard.

Because of the linearity of the instrument, accuracy even at very low turbidity levels is assured by calibrating at 20 NTU.

8.2 CALIBRATION WITH COMPARISON METHOD

This method transfers the calibration of a laboratory instrument to the on-line unit.

Before performing this calibration, make sure the laboratory turbidity meter to be used is properly calibrated.

Do not use this method when the sample turbidity is less than 2 NTU. Take a grab sample and immediately measure with the turbidity meter. Go back to the unit and calibrate the readout according to the laboratory result.

9 PREVENTIVE MAINTENANCE

<u>Controller</u>

Quality components are used to give the controller a high reliability.

The frequency of such maintenance depends on the nature of each particular application.

As in any electronic equipment, the mechanical components, such as switches, relays and connectors, are the most subject to damage.

<u>Probe</u>

The measuring window of the probe must be inspected and cleaned periodically.

The frequency is depending of the application and the accuracy requested for the system.

Clean the probe before the calibration, by removing the dirt from the body with a soft paper filter, avoiding to scratch the window surface.

It is possible to install an auto clean system by using the cleaning function of the controller.

<u>Cell</u>

Clean the cell in the same way as the probe.

In order to clean properly, remove the disk from the bottom of the cell and clean carefully the internal part of the cell.

FRONT PANEL

- 1. Display
- 2. Mode-display key
- 3. Calibration key
- 4. Increase key
- 5. Decrease key
- 6. Enter key

Fig. 1

REAR PANEL CONNECTIONS

1.2.	110 V. Power supply
1.3.	220 V. Power supply
4.	Ground (power)
5.6.	A Relay N.O. contacts
6.7.	B Relay N.C. contacts
8.9	B Relay N.O. contacts
9.10.	B Relay N.C. contacts
11.12.	C Relay N.O. contacts (alarm)
12.13.	D Relay N.O. contacts (cleaning)
14.	Analog output Nr1 (+)
15.	Analog output Nr2 (+) (option)
16.	Analog output Nr1 and Nr2 (-)
17.18.19.21.	
22.23.24.25.	Connection to TU 810 – TU 8105 – TU 8182

Fig. 2

DIMENSIONS

DRILL PLAN

Fig. 3

WARRANTY CERTIFICATE

- 1) Your product is covered by Nieuwkoop B.V./B&C Warranty for 5 years from the date of shipment. In order for this Warranty to be valid, the Manufacturer must determine that the instrument failed due to defective materials or workmanship.
- 2) The Warranty is void if the product has been subject to misuse and abuse, or if the damage is caused by a faulty installation or maintenance.
- 3) The Warranty includes the repair of the instrument at no charge. All repairs will be completed at the Manufacturer's facilities in Aalsmeer, The Netherlands.
- 4) Nieuwkoop B.V./B&C assumes no liability for consequential damages of any kind, and the buyer by accepting this equipment will assume all liability for the consequences of its use by the Customer, his employees, or others.

REPAIRS

- 1) In order to efficiently solve your problem, we suggest You to ship the instrument along with the Technical Support's Data Sheet (following page) and a Repair Order.
- 2) The estimate, if requested by the Customer, is free of charge when it is followed by the Customer confirmation for repair. As opposite, if the Customer shall not decide to have the instrument repaired, he will be charged to cover labor and other expenses needed.
- 3) All instruments that need to be repaired must be shipped pre-paid to Nieuwkoop B.V./B&C. All other expenses that have not been previously discussed will be charged to Customer.
- 4) Our Sales Dept. will contact you to inform you about the estimate or to offer you an alternative, in particular when:
 - the repairing cost is too high compared to the cost of a new instrument,
 - the repairing results being technically impossible or unreliable
- 5) In order to quickly return the repaired instrument, unless differently required by the Customer, the shipment will be freight collect and through the Customer's usual forwarder.

TECHNICAL SUPPORT

In case of damage, we suggest You to contact our Technical Support by email or phone. If it is necessary for the instrument to be repaired, we recommend to photocopy and fill out this data sheet to be sent along with the instrument, so to help us identifying the problem and therefore accelerate the repairing process.

ZIP	CITY	
	PHONE	
s/n	DATE	
	ZIP S/N	ZIP CITY PHONE S/N DATE

Please check the operator's manual to better identify the area where the problem seems to be and please provide a brief description of the damage:

SENSOR	ANALOG OUTPUT
D POWER SUPPLY	□ SET POINT
	RELAY CONTACTS
DISPLAY	D PERIODICAL MALFUNCTIONING

> DESCRIPTION

TO MEASURE **TO** KNOW

Nieuwkoop BV

Aalsmeerderweg 249 - S 1432 CM AALSMEER 0297 325836 info@nieuwkoopbv.nl www.meten.nl

